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Load cell

Feed rollers

Literature Review

Sugarcane mass flow estimation 
methods

 Mass measurement through load cell 
[1, 2, 3, 4, 5, 6] 

 Volume measurement through roller 
displacement [7]

 Volume measurement via optical sensor 
[8, 9]

• Inexpensive, simple, and relatively accurate 
( )

• Depends on ambient light (night time and 
early morning)

• Requires calibration and highly affected by 
changes in material density

•  
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 Problem Complexity 
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Minimum Size: 136 images 
Maximum Size: 3155 images

Average Size: 485 images
Median Size: 625 images

 

• Factors
– Angle of capture
– Mass flow rate
– Frame overlap
– Variable elevator speed
– Different run sizes
– Different lighting conditions
– Sparse ground truth
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Deep Learning Basics
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What to consider when deciding on 
using a DNN? CNN architecture

o AlexNet, VGG, GoogleNet, 
ResNet, Your own?

 Activation function
o Sigmoid, Tanh, ReLU, ELU

 Choice of hyper-
parameters:
o Learning rate

 Loss function
o Classification: Softmax
o Regression: MSE

=  
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Now that we handled frame overlap, we need to figure out how
 to obtain correct predictions per frame
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Gradient Update
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• Our loss function
• Gradient update occurs at every end of a run
• We keep a running sum of gradients and 

predictions
• Compute the derivative of the loss function to 

apply loss
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 DNN Architecture 
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• Input image size: 96 x 144  (5th original size)
• Parameters: K and Size of parameters: 0.17 

MB  
• Training time:  hours 
• Testing average error: 4.5%

 



What is Going on Behind the Scenes?
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• Proper visualization techniques can 
support the investigation of DNN 
functionality.




Robustness
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Histogram Distribution of Error and 
Outliers
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• Instant volume measurement is 
available

• Ground truth (true mass) is only 
available by run

Where ”f” is a 2-layer neural network parameterized by “” that outputs 
a prediction of density based on the volume (V), scaled by elevator 
speed () and capture time (t), with tanh activation

•  
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 x DENSITY  

Volumetric-Based Approach to Mass 
estimation
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 using neural network including low ligh r
 using neural network without low ligh r
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Laboratory data summary
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Temporal Smoothness
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• Images near in time should have more similarity 
in mass than images further away in time

• Hyper-parameter λ (chosen empirically 0.05)
• This term is added to the loss function
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