Mass Estimation From Images Using Deep Neural Network and Sparse Ground Truth

Muhammad Hamdan

Department of Electrical and Computer Engineering Iowa State University

Iowa State University

Motivation Literature review

Motivation

Motivation Literature review

Literature Review

Sugate a nassmass stilla won estimation

methods measurement through load cell [1, 2, 3, 4,

- Mass measurement through load cell
- > Volume 3 casu 5 on through roller
- Voiplagemant distribution of the second s
- > displacances needed to be to a optical sensor [8, 9]
- > Volume enneasure membrine coprises σ sensor [8, 9]%, $\sigma = 6.3\%$)
 - Depends on ambient light (night time and early morning) • Inexpensive, simple, and relatively accurate
 - (Requires calibration and highly affected by changes in
 - Depends on ambient light (night time and early morning)
 - Requires calibration and highly affected by

Massingmeasurement through images from stereo camera

Problem Complexity Algorithm derivation DNN architecture Results

Problem Complexity

• Factors

- Angle of capture
- Mass flow rate
- Frame overlap
- Variable elevator spe
- Different run sizes
- Different lighting cor
- Sparse ground truth

Problem Complexity Algorithm derivation DNN architecture Results

Deep Learning Basics

What to consider when deciding on using ar DINN are

- AlexNet, VGG, GoogleNet, ResNet, Your own?
- Activation function
 - ^o Sigmoid, Tanh, ReLU, ELU
- Choice of hyperparameters:
 - o Learning rate
- Loss function
 - Classification: Softmax
 - Regression: MSE

Problem Complexity Algorithm derivation DNN architecture Results

Loss Function

$$L_{i}(x, y; w) = \frac{1}{n_{i}} \{ y_{i} - \sum_{j=1}^{n_{i}} (f(x_{ij}; w) \times v_{ij} \times t) \}^{2}$$
$$L_{i}(x, y; w) = \frac{1}{n_{i}} \{ y_{i} - \sum_{j=1}^{n_{i}} \hat{y}_{ij} \}^{2}$$

hat we handled frame overlap, we need to figure out to obtain correct predictions per frame

Problem Complexity Algorithm derivation DNN architecture Results

Gradient Update

- Our loss function
- Gradient update occurs at every end of a run
- We keep a running sum of gradients and predictions
- Compute the derivative of the loss function to apply loss $\frac{\partial L_i}{\partial w} \leftarrow -\frac{2}{n_i} \left[y_i \sum_{j=1}^{n_i} \hat{y}_{ij} \right] \times \sum_{j=1}^{n_i} \frac{\partial \hat{y}_{ij}}{\partial w}$

Problem Complexity Algorithm derivation DNN architecture Results

DNN Architecture Summary

DNN Architecture

- Inputingegeesizex 9464 x 51-464 ig (53-1 sozieginal size)
- Parameters: 4 Kkand Size for a parameters: 4 Kkand Size for
- Magning time: ~11 hours
- Testingay erage eraps urs%

Problem Complexity Algorithm derivation DNN architecture Results

What is Going on Behind the Scenes?

 Proper visualization techniques can support the investigation of DNN functionality.

Problem Complexity Algorithm derivation DNN architecture Results

Robustness

Problem Complexity Algorithm derivation DNN architecture Results

Histogram Distribution of Error and

Questions? References

Questions

Questio ns?

Iowa State University

Questions? References

References

[1] Graeme Cox, H Harris, R Pax, and R Dick. Monitoring cane yield by measuring mass flow rate through the harvester. In PROCEEDINGS-AUSTRALIAN SOCIETY OF SUGAR CANE TECHNOLOGISTS, pages 152{157. WATSON FERGUSON AND COMPANY, 1996

[2] G Cox, H Harris, and R Pax. Development and testing of a prototype yield mapping system. In Proceedings-Australian Society of Sugar Cane Technologists, pages 38{43. WATSON FERGUSON AND COMPANY, 1997.

[3] NB Pagnano and PG Magalhaes. Sugarcane yield measurement. faculdade de engenharia agricola unicamp campinas sp, brazil 13083-970. In Proceeding of 3rd European Conference on Precision Agriculture, pages 839{844, 2001.

[4] JP Molin and LAA Menegatti. Field-testing of a sugar cane yield monitor in brazil. In 2004 ASAE Annual Meeting, page 1. American Society of Agricultural and Biological Engineers, 2004.

[5] Domingos GP Cerri and Paulo Graziano Magalh~aes. Sugar cane yield monitor. In 2005 ASAE Annual Meeting, page 1. American Society of Agricultural and Biological Engineers, 2005.

[6] Mike Mailander, Caryn Benjamin, Randy Price, and Steven Hall. Sugar cane yield monitoring system. Applied engineering in agriculture, 26(6):965–969, 2010.

[7] Cox, Graeme J. "A yield mapping system for sugar cane chopper harvesters." PhD diss., University of Southern Queensland, 2002.

[8] Mike Mailander, Caryn Benjamin, Randy Price, and Steven Hall. Sugar cane yield monitoring system. Applied engineering in agriculture, 26(6):965{969, 2010

[9] RR Price, RM Johnson, RP Viator, J Larsen, and A Peters. Fiber optic yield monitor for a sugarcane harvester. Transactions of the ASABE, 54(1):31-39, 2011

Empty Slide

Empty Slide

Data Summary Volumetric-approach Results

Volumetric-Based Approach to Mass octimation

- Instant volume measurementiable -
- Wound that (true mass) is only available by run
- Ground truth (true mass) is only available by run Setevne x DENSITY

$$Mass = f(max(V - \beta, 0); \theta) \times max(V - \beta, 0) \times v_{elev} \times t$$

Where "f" is a 2-layer neural network parameterized by " θ " that outputs a prediction of density based on the volume (V), scaled by elevator speed (V_{elev}) and capture time (t), with tanh activation Where "f" is a 2-layer neural network parameterized by "" that outputs a prediction of density based on the volume (V), scaled by elevator speed () and capture time (t), with tanh activation. Restriction to the trading of the trading o Resiregeneured voetsinerle weithout kowithight tow ligh runs: 8.65%

sec

sec

Data Summary Volumetric-approach Results

Data Summary

Laboratory data summary

Locati	Run	Sampl	Materi	Representa	Environme
on	s	es	al	tion	nt
ISU	239	>120K	Bambo o	Images and point cloud	Controlled

Laboratory etup

Problem Complexity Algorithm derivation DNN architecture Results

Temporal Smoothness

- Images near in time should have more similarity in mass than images further away in time
- Hyper-parameter λ (chosen empirically 0.05)
- This term is added to the loss function

$$L_i(x, y; w) = \frac{1}{n_i} \{ y_i - \sum_{j=1}^{n_i} (f(x_{ij}; w) \times v_{ij} \times t) \}^2 +$$

$$\frac{\lambda}{n_i} \sum_{j=1}^{n_i} \left\{ f(x_{ij}; w) - f(x_{i(j-1)}; w) \right\}^2$$