

Benjamin Lutz, Dominik Kisskalt, Daniel Regulin, Raven Reisch, Andreas Schiffler, Jörg Franke

In tool condition monitoring, vision sensors enable enhanced insight into the state of the cutting tool.

Approaches for tool condition monitoring

- Indirect observation:
 - Vibration [1, 2]
 - Acoustics [3, 4]
 - Power [4]
 - Current [1, 5]
 - Torque [6]
- Direct observation
 - Laser scanner [7]
 - Vision [8-13]

Page 2

Deep Learning appears to be a promising method for solving the defined goals.

Goals

- Assistance system for machine operator
 - Automated detection of different wear regions
 - Calculation of relevant metrics such as flank wear width or area of groove
- Robustness against different illumination situations
- Adaptability for different types of cutting tool inserts

Semantic Image Segmentation using Deep Learning

Examples from other fields:

- Robot-assisted surgery [14]
- Tumor detection in ultrasound data [15]
- Analysis of RMI scans [16]
- Detection of human cells [17]

In the presented solution, a sliding window approach using CNNs is used to provide wear information to the worker.

For every raw image a mask is created indicating whether a pixel depicts background, the tool or a type of wear defect.

Unrestricted © Siemens AG 2019

Page 5 2019-12-19

Some of the classes seem to be easy separable whereas others look similar to the human eye.

Unrestricted © Siemens AG 2019 Page 6 2019-12-19

After hyperparameter optimization, the model reaches a prediction accuracy of 91.5 %.

Pre-Processing

- Slicing into windows of size 48x48 pixels
- For training: Balancing of data due to uneven distribution

Class	Share
Background	39.2 %
Undamaged insert body	54.0 %
Flank wear	5.5 %
Groove	0.8 %
Build-up-edge	0.5 %

Machine Learning Model

- Architecture:
 - 5 CNN layers
 - 16, 32, 64, 128, 256 kernels respectively
 - 32 neurons in fully connected hidden layer
 - ReLu activation functions
- Training:
 - Adam optimizer [18]
 - 200 epochs & 0.001 learning rate

Prediction accuracy: 91.5 %

Post-Processing

- Rearrangement of predicted classes to shape of raw data
- Noise removal using morphological operations

Page 7 2019-12-19

The proposed solution enables additional process insight, automated wear metric calculation and improved accuracy.

Resulting worker information system:

Flank wear width calculation:

Comparison of proposed solution to manual assessment:

- Average error manual procedure: 30.6 µm
- Average error proposed procedure: 17.1 µm
- For most samples, the proposed solution outperforms the manual assessment

The study showed, that deep learning is a promising tool for image segmentation in tool condition monitoring.

Summary

- Deep Learning through CNN can be used for automated semantic segmentation of images for cutting tools
- It is possible to detect and differentiate defects such as flank wear, grooves and build-up-edges
- The developed algorithm outperforms the manual approach in comfort and accuracy

Future research

- Increase of dataset for accuracy improvement
- Investigation of transfer learning strategies for incorporating new type of cutting tool inserts

Literature

- [1] F. Aghazadeh, A. Tahan, and M. Thomas, "Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process," Int J Adv Manuf Technol, vol. 98, no. 9-12, pp. 3217–3227, 2018.
- [2] S. Binsaeid, S. Asfour, S. Cho, and A. Onar, "Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion," J Mater Process Technol, vol. 209, no. 10, pp. 4728–4738, 2009.
- [3] A. Kothuru, S. P. Nooka, and R. Liu, Eds., Audio-based condition monitoring in milling of the workpiece material with the hardness variation using support vector machines and convolutional neural networks: American Society of Mechanical Engineers (ASME), 2018.
- [4] Z.-G. Shen, N. He, and L. Li, "An intelligent monitoring system with the capability of automated features selection," Harbin Gongye Daxue Xuebao, vol. 42, no. 9, pp. 1495–1499, 2010.
- [5] R.-T. René de Jesús, H.-R. Gilberto, T.-V. Iván, and J.-C.J. Carlos, "Driver current analysis for sensorless tool breakage monitoring of CNC milling machines," Int J Mach Tools Manuf, vol. 43, no. 15, pp. 1529–1534, 2003.
- [6] I. N. Tansel et al., "Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR)," Int J Adv Manuf Technol, vol. 58, no. 1-4, pp. 109–118, 2012.
- [7] T. Ohuchi and Y. Murase, "Milling of wood and wood-based materials with a computerized numerically controlled router IV: Development of automatic measurement system for cutting edge profile of throw-away type straight bit," J. Wood Sci., vol. 51, no. 3, pp. 278–281, 2005.
- [8] M. T. García-Ordás, E. Alegre-Gutiérrez, R. Alaiz-Rodríguez, and V. González-Castro, "Tool wear monitoring using an online, automatic and low cost system based on local texture," Mech Syst Signal Process, vol. 112, pp. 98–112, 2018.

Page 10 2019-12-19

Literature

- [9] S. Klancnik, M. Ficko, J. Balic, and I. Pahole, "Computer vision based approach to end mill tool monitoring," Int. J. Simul. Model., vol. 14, no. 4, pp. 571–583, 2015.
- [10] M. Lanzetta, "A new flexible high-resolution vision sensor for tool condition monitoring," J Mater Process Technol, vol. 119, no. 1-3, pp. 73–82, 2001.
- [11] Muir P.F. et al., Eds., Machine vision monitoring of tool wear: SPIE, 1998.
- [12] W.-H. Sun and S.-S. Yeh, "Using the Machine Vision Method to Develop an On-machine Insert Condition Monitoring System for Computer Numerical Control Turning Machine Tools," Materials, vol. 11, no. 10, p. 1977, 2018.
- [13] J. Zhang, C. Zhang, S. Guo, and L. Zhou, "Research on tool wear detection based on machine vision in end milling process," Prod. Eng., vol. 6, no. 4-5, pp. 431–437, 2012.
- [14] A. A. Shvets, A. Rakhlin, A. A. Kalinin, and V. I. Iglovikov, "Automatic Instrument Segmentation in Robot-Assisted Surgery using Deep Learning," in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp. 624–628.
- [15] R. Almajalid, J. Shan, Y. Du, and M. Zhang, "Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation," in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp. 1103–1108.
- [16] M. A. Balafar, A. R. Ramli, M. I. Saripan, and S. Mashohor, "Review of brain MRI image segmentation methods," Artif Intell Rev, vol. 33, no. 3, pp. 261–274, 2010.
- [17] Tudor Barbu, "SVM-based Human Cell Detection Technique using Histograms of Oriented Gradients," in 2012.
- [18] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization", 2014

Page 11 2019-12-19

Thank you!

Benjamin Lutz PhD-Student Smart Manufacturing Siemens, Corporate Technology Iutz.benjamin@siemens.com